Nhiều cựu nhân viên đã tố cáo thuật toán của
Facebook ảnh hưởng nghiêm trọng đến cách hiển thị nội dung trên nền tảng.
Trong phiên điều trần trước Thượng viện Mỹ vào tháng 10, Frances Haugen, cựu quản lý sản phẩm
Facebook chỉ trích động thái hời hợt của công ty trước những nội dung không an toàn cho trẻ vị thành niên. Bà nhấn mạnh nguyên nhân đến từ thiết kế nền tảng và thuật toán xế
p hạng, kiểm duyệt nội dung của
Facebook.
Theo MIT Technology Review, đây là bước ngoặt đáng chú ý so với quan điểm hiện nay của các nhà lập pháp về chính sách kiểm duyệt của
Facebook. Nhiều chuyên gia cho rằng quan điểm hiện tại của giới chức Mỹ đã bỏ qua bức tranh lớn hơn mà Haugen đề cập.
"Tôi ủng hộ mạnh mẽ các giải pháp (kiểm duyệt) không dựa trên nội dung, vì chúng sẽ bảo vệ những người dễ bị tổn thương trên thế giới", Haugen chỉ ra sự không đồng nhất của
Facebook trong khả năng kiểm duyệt nội dung bằng tiếng Anh và ngôn ngữ khác.
Không chỉ Haugen, nhiều nhân vật liên quan cũng có ý kiến tương tự về hiệu quả thực sự của thuật toán nội dung mà
Facebook đầu tư phát triển.
Thuật toán của
Facebook hoạt động thế nào?
Chúng ta thường nói "thuật toán của
Facebook" như thể chỉ có một đoạn mã tồn tại. Trên thực tế, quyết định nhắm mục tiêu quảng cáo, hiển thị nội dung trên
Facebook dựa trên hàng trăm, hoặc hàng nghìn thuật toán. Một số thuật toán phân tích thói quen người dùng để nâng vị trí bài đăng dựa trên sở thích, số khác phát hiện các loại nội dung bẩn như ảnh khỏa thân, spam, tiêu đề giật gân để xóa, hạ vị trí của chúng trên News Feed.
Frances Haugen, cựu Giám đốc Sản phẩm
Facebook tố cáo công ty cũ trước Thượng viện Mỹ đầu tháng 10. Ảnh: The New Yorker.
Với lượng dữ liệu khổng lồ của người dùng
Facebook, thuật toán có thể tự phát triển để thu hẹp phạm vi đối tượng. Không chỉ có "nam" hay "nữ", thuật toán có thể biết người dùng là "nữ từ 25-34 tuổi, thích những fanpage liên quan đến yoga" để nhắm quảng cáo cho họ. Mục tiêu được nhắm càng cụ thể, cơ hội nhấp vào quảng cáo càng cao, mang đến nhiều lợi nhuận hơn cho nhà quảng cáo so với chi phí bỏ ra.
Nguyên tắc tương tự cũng áp dụng cho vị trí nội dung trên News Feed. Thuật toán có thể được huấn luyện để dự đoán ai sẽ thích hoặc chia sẻ bài đăng với nội dung nhất định, từ đó đẩy những bài tương tự lên vị trí cao. Ví dụ, nếu thuật toán xác định một người dùng yêu chó, những bài viết có ảnh chó sẽ xuất hiện cao hơn trên News Feed.
Trước khi
Facebook áp dụng thuật toán máy học, các nhân viên đã sử dụng nhiều cách để tăng mức độ tương tác. Họ thử nghiệm các chi tiết như màu sắc nút bấm, tần suất nhận thông báo để thu hút người dùng quay lại nền tảng. Tuy nhiên, thuật toán máy học mạnh mẽ hơn khi có thể phát triển dựa trên thói quen liên tục thay đổi của người dùng, thay vì chỉ cá nhân hóa nội dung dựa trên những gì họ nhìn thấy.
Ai quản lý thuật toán của
Facebook?
Không có đội ngũ cụ thể phụ trách toàn bộ thuật toán của
Facebook. Các kỹ sư phát triển và bổ sung mô hình máy học của riêng họ vào hệ thống chung. Ví dụ, đội ngũ tập trung vào nội dung bẩn chỉ huấn luyện mô hình của họ để nhận diện các loại nội dung không phù hợp.
Hướng đi này là một phần trong văn hóa "di chuyển nhanh, phá vỡ mọi thứ" của
Facebook. Công ty đã phát triển công cụ nội bộ có tên FBLearner Flow, giúp các kỹ sư không có kinh nghiệm về máy học dễ dàng phát triển mô hình thuật toán dựa trên yêu cầu của họ. Một tài liệu nội bộ cho thấy công cụ được hơn 1/4 nhóm kỹ sư của
Facebook sử dụng vào năm 2016.
Thuật toán của
Facebook bị tố gây tác động tiêu cực đến người dùng trẻ, bỏ qua bài viết kích động bạo lực trên nền tảng. Ảnh: New York Post.
Trong các tài liệu của
Facebook bị rò rỉ cho giới truyền thông, nhiều nhân viên (đang làm việc hoặc đã nghỉ) của
Facebook cho biết đó là một phần khiến nền tảng này không thể xử lý triệt để nội dung bẩn. Các nhóm kỹ sư đặt ra mục tiêu khác nhau khiến hệ thống thuật toán trở nên phức tạp, khó sử dụng đến mức không ai có thể quản lý mọi thành phần bên trong.
Krishna Gade, cựu Giám đốc Kỹ thuật
Facebook cho biết công ty kiểm soát chất lượng thuật toán chủ yếu dựa trên thử nghiệm và đo lường kết quả. Một mô hình sẽ bị loại bỏ nếu chúng làm giảm mức độ tương tác quá nhiều. Trên Twitter, Gade giải thích các kỹ sư sẽ nhận thông báo vài ngày một lần nếu các chỉ số bình luận, lượt thích sụt giảm. Sau đó, họ cần tìm ra nguyên nhân và huấn luyện lại thuật toán.
Thuật toán của
Facebook lan truyền tin giả ra sao?
Trong phiên điều trần, Haugen liên tục nhắc đến thuật toán của
Facebook kích động lan truyền tin giả, ngôn từ thù địch và bạo lực.
"Facebook... biết - từng thừa nhận trước công chúng - rằng thuật toán xế
p hạng nội dung dựa trên mức độ tương tác gây nguy hiểm nếu không có hệ thống bảo mật, tuy nhiên lại không triển khai hệ thống ấy cho hầu hết ngôn ngữ trên thế giới... Nó khiến các gia đình chia ly. Tại những nơi như Ethiopia, thuật toán đang kích động bạo lực sắc tộc theo đúng nghĩa đen", Haugen n?
?i.
V??o năm 2018,
Facebook từng công khai thừa nhận chưa hành động đủ, khiến nền tảng bị lợi dụng để gây chia rẽ, kích động bạo lực ngoài đời. Một bản thuyết trình nội bộ cho thấy công ty đã nhắc đến điều này ít nhất từ năm 2016. Monica Lee, nhà khoa học dữ liệu của
Facebook, thời điểm ấy đã phát hiện nền tảng không chỉ chứa lượng lớn hội nhóm mang tư tưởng cực đoan mà còn gợi ý chúng cho người dùng.
"64% thành viên tham gia các nhóm cực đoan đến từ công cụ đề xuất của chúng ta, chủ yếu đến từ tính năng 'Nhóm bạn nên tham gia' và 'Khám phá' trên
Facebook", Lee cho biết.
Năm 2017, Chris Cox, Giám đốc Sản phẩm
Facebook đã lập đội ngũ phân tích việc tối đa hóa tương tác trên
Facebook có góp phần gây phâ
n cực chính trị hay không. Kết quả cho thấy sự liên quan, trong khi giảm bớt nội dung phâ
n cực cũng tác động đến tương tác. Hầu hết giải pháp được đội ngũ đưa ra bị cho là "anti growth" (chống lại sự tăng trưởng) khiến chúng không được duyệt, cuối cùng đội ngũ này cũng giải tán.
Trong lời khai trước thượng viện Mỹ, Haugen nhiều lần nhấn mạnh tình trạng phâ
n cực trên
Facebook tệ hơn tại các khu vực không nói tiếng Anh.
Tin giả là một trong những vấn đề nghiêm trọng với thuật toán của
Facebook. Ảnh: New York Times.
"Tại Ethiopia với 100 triệu dân và 6 ngôn ngữ,
Facebook chỉ hỗ trợ 2 trong số chúng cho hệ thống thuật toán đầy
đủ... Chiến lược tập trung vào từng ngôn ngữ, nội dung cụ thể cho AI để cứu chúng ta chắc chắn thất bại. Do đó, đầu tư vào các giải pháp không dựa trên nội dung không chỉ bảo vệ tự do ngôn luận, mà còn bảo vệ cuộc sống mọi người", Haugen cho biết.
Từ tháng 10, WSJ đã đăng tải loạt bài thuộc chuyên mục The
Facebook Files, bao gồm tài liệu nội bộ cho thấy Instagram ảnh hưởng đến sức khỏe tâm thần ở người dùng nữ trẻ tuổi. "32% cô gái tuổi teen nói rằng họ cảm thấy tồi tệ về cơ thể của mình, Instagram khiến họ cảm thấy tồi tệ hơn", một slide thuyết trình tháng 3/2020 cho biết.
Haugen cũng liên kết tình trạng này với hệ thống xế
p hạng nội dung dựa trên mức độ tương tác. "Nếu Instagram là động lực tích cực, chúng ta có thấy sức khỏe tinh thần của thanh thiếu niên được cải thiện rõ trong 10 năm qua chưa? Không, chúng ta thấy tỷ lệ tự tử và trầm cảm ở thanh thiếu niên leo thang", Haugen cho biết.
Cần có giải pháp ngay bây giờ
Theo MIT Technology Review, đội ngũ nghiên cứu của
Facebook nhận thấy người dùng có xu hướng đăng hoặc tương tác với nội dung buồn bã, dấu hiệu có thể của bệnh trầm cảm, dễ dàng chuyển sang tiêu thụ nội dung tiêu cực, ảnh hưởng đến sức khỏe tâm thần. Tuy nhiên trong lúc tố cáo, Haugen khẳng định các lãnh đạo
Facebook không quan tâm đến thay đổi thuật toán.
Các kỹ sư của
Facebook đã đề xuất điều chỉnh mô hình xế
p hạng, ít hiển thị nội dung tiêu cực trên News Feed hơn. Tuy nhiên, không có động thái thực tế cho sự thay đổi này. Khi mức độ tương tác làm thước đo đánh giá hiệu quả dự án, nhân viên phải làm quen với việc bỏ qua phản hồi, tiếp tục làm việc với các nhiệm vụ được chỉ định từ cấp trên.
Haugen không ủng hộ việc chia tách
Facebook hoặc bãi bỏ Điều 230 trong Chuẩn mực Truyền thông ban hành năm 1996 tại Mỹ, bộ luật được xem như lá chắn bảo vệ các hãng công nghệ lớn. Thay vào đó, bà kêu gọi điều chỉnh mục miễn trừ trách nhiệm trong Điều 230, tập trung vào thuật toán xế
p hạng. Haugen cũng ủng hộ
Facebook trở lại cách xế
p hạng bài viết trên News Feed theo trình tự thời gian.
Thay vì sử dụng người thật,
Facebook đã chuyển phần lớn nhiệm vụ kiểm duyệt nội dung sang thuật toán trong những năm gần đây. Ảnh minh họa: Getty.
Ellery Roberts Biddle, Giám đốc Dự án tại Ranking Digital Rights, tổ chức phi lợi nhuận chuyên nghiên cứu hệ thống xế
p hạng bài viết trên mạng xã hội, nhận định việc chỉnh sửa Điều 230 cần được xem xét cẩn thận. "Tôi không nghĩ nó sẽ hoàn toàn đạt mục đích như chúng ta kỳ vọng", Biddle cho biết.
Để kế hoạch chỉnh sửa Điều 230 hiệu quả, Biddle nói rằng các nhà hoạch định chính sách và công chúng cần yêu cầu độ minh bạch cao hơn về cách hoạt động hệ thống nhắm mục tiêu quảng cáo, xế
p hạng nội dung của
Facebook. "Tôi hiểu ý của Haugen, nhưng nó rất khó khăn. Chúng tôi chưa thể có câu trả lời về tính minh bạch xung quanh các thuật toán", Biddle cho biết.
Tuy nhiên, lời tố cáo của Haugen đã thu hút sự quan tâm lớn đến vấn đề được nhiều chuyên gia, nhân viên tại
Facebook đã đề cập từ lâu. Ngoài ra, sự can thiệp của Haugen cũng mở ra viễn cảnh nếu
Facebook không thể đưa thuật toán vào khuôn khổ, các nhà hoạch định chính sách có thể giải quyết vấn đề.
"Quốc hội Mỹ có thể thay đổi các quy tắc của
Facebook để ngăn chặn tác hại đang gây ra... Tôi chấp nhận gặp rủi ro cá nhân để tiếp tục vì tin rằng chúng ta vẫn còn thời gian hành động, nhưng cần làm điều đó ngay bây giờ", Haugen cho biết.
Theo Zing/MIT Technology Review
Mạng xã hội tại Australia có thể phải xin phép phụ huynh của người dùng vị thành niên
Australia vừa công bố kế hoạch buộc các mạng xã hội phải xin phép phụ huynh của người dùng dưới 16 tuổi và sẽ phạt hàng triệu USD nếu vi phạm.
Nguồn bài viết : Miền Nam